The Paradox of Voting
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John O. Ledyard

Conventional analysis of the decision of expected utility maximizing agents
1o vote has concluded that it is irrational to vote unless voters have a distorted
view of their individual impact or place 2 direct value on the act of voting.'
On the other hand, mathematical analyses of the electoral process (see, for
example, Davis, Hinich, and Ordeshook, 1970) have usually assumed that
all voters vote.? Each theory is incorrect, in the sense that in actual elections
turnout is neither zero nor 100 percent.

In this paper we wilt argue that previous analyses of expected utility max-
imizing voters stopped too soon, because of the partial equilibrium ap-
proach, and that if each voter considers the simultaneous reactions of all
voters in a “rational” manner, then, depending on the location of the can-
didates’ platforms, turnout will usually be positive but less than 100 percent.
In particular, we will derive a (probabilistic) vote supply function, given a
distribution of voters and the choice of platforms of candidates, which has
the property that—even with costs of voting (unless the candidates have
identical platforms)—the expected turnout is positive. The model and these
results are presented in sections LA and IB.

Since Ferejohn and Fiorina (1974 and 1975) have presented persuasive
theoretical and empirical arguments that another form of rational behavior,
“minimax regret,” is realistic and has the property that turnout is positive
(unless platforms are identical), we will spend some time comparing the
implications of their model and ours. Essentially, we claim that our model
predicts larger turnout than their model when preferences (ideal points)
are symmetrically distributed, candidates’ platforms are close, and the var-
iance of tastes is small {with concave utility functions) or large (with a type
of convex utility function). Predicted turnout is larger in their model for
opposite values. Thus, neither dominates the other with respectto predicted
wrnout, This is discussed in detail in section IC.

The results concerning turnout and voter behavior in both models de-
pend on the candidates’ choices of their platforms. Thus a natural question
is, What will candidates do, given our model of voters? This furthers the
move to a general equilibrium approach since candidates’ and voters’ be-
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havior now are simultaneousty determined. Using expected plurality max-
imizing behavior for wo-candidate elections, we obtained mixed results in
our investigation. For concave utility functions and symmetrically distrib-
uted ideal points, equilibrium occurs with both candidates’ choosing the
median ideal point and no voter voting (since platforms are identical}. Fur-
ther, if ideal points are asymmetrically distributed in the tails of the distri-
butions (that is, at extreme distances from the median), usually no general
equilibrium will exist. These results appear in sections 1A, 1IB(), and
TIBGi).

On the other hand, if utility functions are convex on each side of the ideal
point and if tastes are unimodal and not too asymmetric, a general equilib-
rium exists with candidates choosing identical platforms at the modal ideal
point and no voter voting. These results are included in section 11B(iii).

A summary of results is provided in section {IC, with some additional
remarks. One deserves emphasis. In general equilibrium, with expected
plurality maximizing candidates, the outcome is identical for two models of
voter behavior: ours and minimax regret. That is, both models predict, in
equilibrium, identical candidate platforms and no voter turnout if costs of
voting are positive. '

In section 111 we consider three additional problems: {a) the implications
of vote maximizing candidates—turnout is positive in equilibrium if it exists;
(b) M candidate elections for M = 2, although no general equilibrium results
are presented where candidate behavior is included; and (¢) some remarks
on testing models of simultancous voter and candidate behavior—particu-
Jarly our model. This section concludes the paper.

1. VOTER (PARTIAL) E UILIBRIUM:
TWO CANDIDATES

We begin with the conventional analysis of the voting decision of a single
voter in the spirit of Downs, Tullock, Riker-Ordeshook, and Ferejohn afifl
Fiorina. u this model, candidates A and B select platforms O, Oz e H,an
“issue space.” A voter than votes for (say) A, if and only if the expected utility
outweighs the expected utility from voting for B or from abswuaining.

A. The Conventional Analysis

We consider a model with = + 1 voters, indexed by i = 1, 2,...n+ L
Each voter has preferences overa set of possible issues, H. Two candidates
are indexed j = A, B, where ©; ¢ H isf's platform. When a voter votes for
a particular candidate (or abstains), he is implicitly selecting gamble, since
at the time of the decision he does not know how other voters will vote. We
make the standard assumption that the voter who makes the decision under
uncertainty acts as if he maximizes expected utility.
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ASSUMPTION 1. With each voter i is associated a utility function U on
H, such that

(a) (candidate irrelevance) i prefers candidate A to B if and only if U* (8,)
> (93), and

(b) (expected utility hypothesis) letting (T4, 113, 6,4, O ) represent the gam-
ble that j is elected on platform ©; with probability fL; (for j = 4, B}, voter
i prefers (T, (15, ©,, Op) to (M, T1%, ©4, 03) if and enly if I, - U0, + Iy
U (05) > T, U (O} + - U (B3).

To ease the exposition and pave the way for later analysis, we make the
additional assumption that each voter's (expected) utility function can be
parameterized. That is, we let D be a space of voters’ characteristics and let
Ui (©) = U(O, d') be the utility of i for © if his characteristic is d' ¢ D. Three
simple examples may help the reader understand the notation.

Example 1 (Type 1 preferences).’ Let H = RE, the L dimensional Euclid-
ean space. Let D = R* and let U(S, &= - (0 — dY® - d) =
— 3% ., (B¢ — di)2. Thus, every voter has a quadratic utility (loss) function,
whose ideal point is &', over L issues measured as real numbers.

Example 2 (Simple social choice). Let H = {x,, xg, x3}. That is, there are
only three alternatives. Let D = R3and let U(x,, d) = d; fork = 1,2,3. Thus
& = (&, db, di), where d} is 1's utility for alternative .

Example 3 (Type II preferences). Let H = RL, D = R:and U@, d) =

- [ - d')’(O - &Y, m> 1. As for type 1 preferences, each voter has an
ideal point d'. However, while type I preferences are concave utility func-
tions, type II preferences are convex, on each side of 4'. As we will see, the
behavior implied by type 11 preferences is significantly different from be-
havior implied by type I preferences.

A digression. Assumption 1(a) can be weakened, in what follows, to allow
voter identification of candidates to be important. For example, suppose i
believes ex ante that if j adopts the platform 6, then j will implement the
platform v, if elected, with probability #(y, ©;, d). Then 1's ex ante utility for
j. given the platform ©, is Wi (8, d) = [ UM d&)é(y, ©; d)dy. Thus, i
prefers A to B if and only if W* (8, &) > W2 (03, d), and evenif 0, = Oy,
i may prefer A to B. Since this does not explain where the ¢ (-) likelinood
functions come from, and since this generality tends to obscure the main
issues, we will reconsider it only if it has some significant bearing on the
results to be derived.

One characteristic (in addition to &) which we also need to consider is the
cost of voting, . We will assume that 0 < ¢ < ¢ <% for alli; that is, all voters
must incur a cost if they vote, and these costs are bounded away from zero
by ¢. For shorthand purposes only, we will let ¢ = (&, ¢) and E = D X
{c, =).

ASSUMPTION 2 (No income effects). If candidate j wins, then voter i
with characteristic ¢, receives utility U(6), &) — ¢ if he votes and U(6;, d')
if he abstains.
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Another digression. Assumption 2 could be wea]_tened to i receives U(©;,
¢ &) if i votes and j wins, while { receives U(®;, 0, d) if j wins and i abstains.
Unfortunately, this complicates the analysis somewhat. Further, as faras 1
can tell, this weakening does not seem to alter the equilibrium resulis below.
1 will therefore stay with assumption 2 to €ase exposition and 10 remain as
close as possible to the standard framework.

We are now ready to analyze the voters' decision. A voter has three possible
acts: vote for 4, vote for B, or abstain. There are, essentially, five states of
the world which must be considered. Let#; be the number of votes cast by
the other n voters forj = A, B. {Since we allow abstentions, n, + ng < is
possible.) The five states are S, where ny > 75 + 1; 8y, whereny = n3 +
1; Sq, where ny = ng; 4 whereng = ny + 1 and Sy, where ng > ny + L.
Let ' be the probability of state k from {'s point of view.

Lemma 1 (Ferejohn and Fiorina, 1974). If tied elections are decided by
a fair coin toss, then, given 0,,0;s,¢, apd p=h - %), voler i maximizes
expected utility by (deleting the i on p):

voting for A if W(O, f) > PRy {1a)
voting for B if — > o > W(O, ¢) (1b)
abstaining if — ” < WI(O, &< .y {l¢)
where W(0, ¢) = U0 4) 2_':,» C dz),
For precision, the boundary cases in Lemma 1, when W(©, £) = 7 :_ o

, should be dealt with. At these values, tis indifferent

orW®,¢) = -
P+ Ps

between voting and abstaining. Thus one should make some assumption
about the actual act chosen. Fortunately, this boundary situation will usually
occur (below) with probability zero and may safely be ignored. 1f not, we
will point out the implications at the appropriate time.

At this point, the conventional analysis notes that both ps + P4 and p, +
ps are objectively very small and, unless voters inflate their estimates or
receive a direct utility gain from voting, 2 rational expected utility maxi-
mizing citizen will decide to abstain. This contradicts empirical evidence,
since people do vote. Asa solution to this apparent dilemma, Ferejohn and
Fiorina suggest that instcad of maximizing expected utility, voters act ac-
cording to Savage’s minimax regret criterion. It is useful for later analysis
to summarize their results in our notation:

Lemma 2 (Ferejohn and Fiorina, 1974). If tied elections are decided by
a fair coin toss, then, given 6,, 65 and ¢, voter i minimizes his maximum
regret by: _

voting for A if w®©, &) >2 (2a)
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voting for B if W(8, ¢) < -2 (2b)

abstaining if —2 < W(O, )< 2. (2¢)

We note that this is equivalent to expected utility maximizing if and only if

: 1
P2+P3"_’§=P3+P4-

B. Full Rationality

In this section we consider an alternative 10 both models discussed in 1A. In
particular, we propose and analyze a solution to the paradox of voting sug-
gested by Ferejohn and Fiorina but never followed up.* The solution is
brought about by assuming that each voter is rational and that each assumes
the others also are rational. This will allow us to calculate precisely what
pi + piand p§ + pj arein the mind of each voter i. Further, we will be able
to make some statements about expected turnout (which will, in general, be
non-zero).

ASSUMPTION 3. (a: Each voter assumes all voters are rational). Each
voter i believes all other voters follow the (expected utility maximizing)
decision rules in Jemma 1. (b: Independent-identical beliefs). Each voter ;
believes other voters' characteristics are independently and identically dis-
tributed on E, according to the probability measure p.

Thus, although i doesn’t know k's characteristic and, therefore, doesn’t
know how % will vote, he does know how & will vote (or abstain) if k has the
characteristic ¢*. He also believes that ¢* is a random variable drawn from p.
For full rationality (as in a rational expectations equilibrium), one might
want to assume that p was the empirical distribution. Below, it will be helpful
to have p “continuous,” and, thus, we usually assume that the true distri-
bution of characteristics is approximated by a continuous density function.
For large electorates this is not a severe limitation.

Another digression. The assumption of independent and identical beliefs
is not crucial for much of what follows but does allow for considerable sim-
plification of the analysis. We could replace A3 with the following weaker
expectations hypothesis. Let Z=[d,...,d"1,d",...d"and assume each
i believes the others’ characteristics, 2, are distributed according to the meas-
ure ¥i(e')(z) if i's characteristic is ¢'. In this case, #'s expectations can depend
on ¢, whereas in assumption 3 they are independent of ¢'. This is followed
up in section I11B. _

Lemma 3. Under assumptions 1-3, given 9,,6;, p, and p’, voter ibelieves
the probability g;, that an arbitrary voter A (h + i) votes forj = 0, A, B (j
= 0 means abstention), is (assuming p' = p*):

ga=1- G, ©,, 8p) (3a)
l
s = G("‘ E, 94, 93) (3b)
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¥
o = G 81 85) = G(~ 500 09 (50)

where a = p5 + P B = #, + py, and G(r, O, O8) = wile € £ | W4, Og,
-] i R 1 W e N = _l_}) = 0]
¢) = 7}) [assuming that b (e E\W(O, ) = e 0,6) = 8 .

i icat jon 3 and lemma 1.

Proof. Straightforward applicaton of assumption )

Notice that igf p is concentrated on 2 finite number 9f points (say,n + 1)
then the last qualifying phrase, needed for the case of indifference betw'ccrcl‘
voting and abstaining, may be false. We will assume shortly that i, egcim
Qj are such that G is continuous in 7. This will rule out p cor}ce'ntral on
a finite number of characteristics and make the qualifying clause
ungz(\::ﬁa\g;er i knows g4, gz, and ., be {s in a position to calculate a = ps
+ peand B = p2 + P q

Lemma 4. Given g, 48, NG o

o = flga, 98) (:a))
B = flgm 94} (

where f(x,y) = z[‘i]. e Ill) x*y*(l _x__y)n-n +
-1

2[:_.] METh M —x— y)"~24-3, and [v] is the largest integer that is no

greater than v.

Proof. For n voters, let (4, ng, B~ R4~ nB). be the event where n,y vote t:or
A, ng vote for B, and n—ns~%p abstain. Given gy, ¢z and 4, .plus the m(;
dependence assumption, the probability of (n,, g, n—"N4— ") 18 calculate
wobe{” BT (qa) ™) (1 —qa— gg)* "™ ~™ from the trinomial distri-

A ng
bution. The rest follows easily. .

At this point it can be seen that g4, 48, &, and  are simultaneously de}er-
mined and that all voters' decisions {as described in {1 and expectations
will be consistent and in equilibrium if, and only if, (3) and (4) are jointly
satisfied. . )

aDcaﬁnition. A (symmetric) voters’ equilibrium for (B, O, H.) is a 4-tuple
(q%, gb, o™, B*), such that (3a), (3b), (4a), and (4b) are simultaneously
tisfied.
sall:cmarks. (1) The qualifier “symmetric” refers to the f:fct that all voters
are assumed to have identical decision rules, (1), and identical expectations.
(2) This concept of equilibrium is a special case of a Bayes e't’lmhbn.u'm in
strategies, §* E » {0, A, B}, where, for each ¢, §' (¢" rt_lazumxzes : s conditional
expected utility, given the stratcgies. (S, . = §i-t, s+, ..., 87 of the other
voters. This is explored more fully in section 3b.
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Of interest, of course, is whether a voters’ equilibrium exists and what its
properties are. The second question is more difficult, primarily because of
the cumbersome form of f{x,y) in lemma 4, but as will be seen, we can say
some things about it. The first is easy and so we turn to it now. We state a
simple and somewhat uninteresting result.

Proposition 1. Given (6,4, 95, p), such that G(1, 0,, 05 — G(-1,8,,
6, = 1, (gf. gk «*, B = (0,0, 1, 1) is the unigque symmetric voters
equilibrium. :

Proof (Existence). One can easily show by substitution into (3) and (4)
that (0, 0, 1, 1) is an equilibrium under the assumption on G.

(Uniqueness). Under the assumption on G, it follows from (3) that g, =
gs = 0 for any values of o, B £ [0,1]. Thus by (4), « = B = 1 must hold.

Remarks. Several remarks are in order. First, if 6, = O3, then G(1, 0)
- G(—1, ©) = 1 and the proposition applies. Second, if w is sufficiently
dispersed, then G(1, ©) — G{-1, ©) = 1 only if ©, — O is small. For
example, consider the type I preferences of example 1 when there is a single
issue, H = R, Let ©, — 63 = £ and wﬁ = 09, let ¢ be fixed, and
assume d is distributed normally with mean 0 and variance 1. Then G(1, 6)

-6(-1,0) = *\/‘1—2—“E_1::'| ¢ 2 dx < | whenever ¢ > 0. For type II pref-
1

erences® with U, d) = — 10 — d, G(1,0) — G(—1,0) = 0if |8, — Oyl

= lg| = 4¢% Otherwise, G(1,0) — G{(-1,6) > 0.

Another thing to notice is that if G(1, 8) — G(—1, 0) = 1, then expected
turnout is always zero since no voter ever has preferences d and costs ¢ which
provide any gain from voting, even if ail others abstained. Finally, notice
that it is also true that expected turnout is zero under minimax regret be-
havior (from lemma 2) if G(1, ©) — G(-1, 8) = 1. Thus, this situation is
somewhat uninteresting, except that it exactly describes the equilibrium if
0, = 6. As we will see below, candidate competition may well produce 9,
= Oy as a final result and, therefore (by proposition 1), no turnout.

Proposition 2. Given 0, 85, p), if G(r, ©,, Op) is continuous in 7 &
(—o=, ®), there is a2 symmetric voters’ equilibrium for (0,, 05, ).

Proof. Let #%a, B) =if (g4 (o), g (B)] and A*a, B) = [ [ g5 (B): 9a ()],
where g (@) = | — Gl., 6] and g5 (B) = G(~ %, ©). Then g4 (3, ga () arc

defined fora, B e (0, 1). Let g4 (0) = Oand g5 (0) = 0. It is then easy to show
that the function h(x, B) = [A*(a, B), #*a, B)] continuously maps [0, 1] x
{0, 1] into itself, since G and f are continuous respectively in r and (a, B). By
Brouwer’s theorem, there is a fix-point (a*, B*). Let g} = g, (a*) and ¢}
= gz (B*). Then (¢}, ¢, o*, B¥) isan equilibrium.
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Remarks. There are a variety of easily acceptable assumptions on U(©, d)

is i ample jet D =R, k< o,
nd g, such that G(r, 0) is continuous In 7. For example, 2 k<
:nd :ssume (1) U®, d) is continuous in © for all d £ D and {(2) for each

- Borel subset R C D X (& x), p (R) = N h{e)de, where h is a continuous

density function such that h(e) > Oforallee E. In fact, these conditions are

stronger than necessary. - . '

Perghaps unfortunately, if there are only a finite number qf types in E (;k;lat
is. E is a finite sev), it is usually the case that G is not continuous 13 r. This
does not mean there is no equilibrium; however, proposition 2 does not

er this case. ‘ . . N
CO\A simple corollary of proposition 2 is that if there is a positive probability

that someone will vote if all others abstain, expected turnout [thatis, (n +
1 + is positive in equilibrium. ' ‘ _
)(éirolffx?)]r 2.Il)?C-iven (04, O35, 1), such that G is continuous in 7 and G(1,
0) - G(~1,9)<}, then a voters equilibrium exists and gf + g5 > 0.
Proof. If g% + ¢5 = 0, thengt =¢3 =0 and rx*' = @* = 1. But then
gt + g5 = 1-G(1,0) + G(—1,0)>0by assumption. QED.

C. Comparison to Minimax Regret

As an interesting side issue, one might wish to compare expected percentage
turnout, g§ + ¢§, in this expected utility model with that pr'edlcted by the
minimax regret model of Ferejohn and Fiorina. The first obvious factis that

fa*,p*= %, then ¢ = ty. If onels tempted to conclude from this that “since

o and B are small, ty > g, One would be wrong. To see why, consider tépze
I preferences on a single-dimensional issues space, .U (e,0) = —(a — Y.
Let ¢ = 1 (thats, normalize z by ¢) and assume 4 15 normally distributed

d .4
with mean 0 and variance o. Further assume O, = 3 and O = — > Then

Ll f
adkr 2 =
in voters’ equilibrium a = $ and g4 (@) = ga (@) = 1 - \/'E-[’ ¢ “dx
q(ado). Thus, implicidy, & = {1¢(ada), glado)), or explicitly: a = i{da). Now
= g = B g since ¢ > 0and® £ + £, < 0.
k(o) = 1 and & (do) -G, + 07 q y
. 9 ' !
Further, :“ hido) = = for large n. Thus for small values of ad, a* > 2

|
which implies tg > ta, while for large values of od, a¥ < kY which implies iy

. 1
> t;. | have not calculated the value of do for which A(od) = > In any case,
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w;trh symr.n‘etrlc type I preferences, close and symmetric platforms, and small
variances in tastes, higher turnout is predicted by this model than by the

minimax regret model. Large varia i
: T . nces and distant platform
opposite conclusion. P $lead tothe

If we consider ty /i ;
¥ o Zr vpe 11 preferences where U(0,a) = — |0 —af* and let 6,
=38%=-3 and a be distributed normally with mean 0 and variance 1,

then we find again, that for small values of ¢, a is near 1. For ¢ = 2 ¢ a

_ dot

L. }.{owever. now =~ > 0 and therefore large values of ¢ imply a > %
Thus, in the case of type 11 preferences, close and symmetric platforms and
lax.-gf: variance in tastes lead to 2 higher prediction of turnout than under
minimax regret behavior. That is, the effect of the variance of the tastes of
voters is exactly o.ppositc under type I and type 11 preferences. )
cnlcr;ss:nzlmary, given platf?rms: .6," and 63, and a distribution of prefer-
‘ s and costs, p, 2 voters’ equilibrium can be defined and shown to exist
if G is continuous. In general, expected turnout seems to be positive, al-
though no precise figures were calculated. Further, whether more or ’less
turnout is predicted by this model, as opposed to the minimax regret model
dcgends on the specific values of ©, and ©j, the form of preferences anci
their variance. Since the choice of platforms is so crucial to that uestion
we turn now to modeling how they are chosen. ! '

II. ELECTORAL EQUILIBRIUM: TWO CANDIDATES
A. Definition of Equilibrium
From section I, given (8,, €3, p), 2 natural conc i
‘Tol on 1, 24, Op. 1), ept of voters’ (partial i-
ll‘bnum_ arises fron'! which one can infer, for each voter, (g}, gt, 42)3 iﬁlelilr
probabilities of voting for A or B, or abstaining. Thus, given (9,,,0 Opg, 1)

one can compute, assuming voters are in equilibri i i
1 € » s quilibrium, such things a
probability that A wins, which is e as (i) the

prob {ns > ng} + %prob {ny = ng} =
[I'z'] n~2%+1fnt+1l —k—r+1
2,‘_0 21-1 (k-i-r)(n A r ) (qd}lu.r (qb)k (1 —qa _qB)n—ﬂ-nl
1 [$] n+l ~k+1
"2 i ( k )(n k )(‘“)‘@B"‘(1—%—%)"'2*“

or (i) A's expected plurality, which is (n+1)(g4 - i) A"
5 ex f qa — qu), or (iii) A’s expect d
vote, which is (n + 1) ¢*. Each of these has been proposed, along with of}fzr:f
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as a possible objective function for candidate A. We will begin by considering
expected plurality and will reserve comment On the others until later in
section IILA.

ASSUMPTION 4. (a: Expected plurality hypothesis). Given (G4, O5, 1),
both candidates act as if they wish to maximize expected plurality under the
assumption that voters are in equilibrium. (That is, A desires to maximize
(n+1) [¢% (B4, B5, 1) — 5 Oa, 05, W)})

(b: Existence of voters' equilibrium). Given (g, 64, O3), either G(1, ©) —
G(-1,0)=1lor G(r, ©) is continuous inr.

Under this assumption, there is a natural concept of electoral equilibrium.

Definition. The 4-triple (B4, O3 44, §s) is an electoral equilibrium for p if
(a) there are and B, such that (4. s, o, B) is a voters’ equilibrium for
(B4, O3, 1), and (b) . .

WA, Op) = W04, 05V Oy e H

wh(B,, 05) = WE(0,, O3) ¥YOeH
where WA (8, 05) = 45(04, 05, ) ~ qa(04, 95, W), W2(0,, 03) = ~WHOy,,
©p), and [¢a(Oa: B3, 1), 9204 O ), a, @] for some (=, B) is a voters’
equilibrium for (©,, O35, 1)

Thus, (B4, ©;) is a Nash equilibrium of the {zero-sum) game in which
candidates’ payoffs are their expected plurality under the assumption that
voters will vote as if in voters’ equilibrium.

B. Existence of Equilibrium

It is easy to show that if gA(B, Oa, 1) is concave in 8, and convex in 8 and
if ga(64, ©5, 1) is concave in O and convex in ©,, then an electoral equi-
Jibrium exists. However, these concavity properties need not be valid for
arbitrary classes of preferences, U(©,d), and priors, p. Therefore we need
to explore for what preferences and priors an equilibrium does exist, It turns
out that both the question of existence and the character of equilibrium
depend crucially on the concavity properties of the utility functions and the
symmetry (or lack of it) of the prior distribution. Thus, we need to consider
several cases.

(i) CONCAVE UTILITY: SYMMETRIC PRIOR. We first prove that if
tastes are_concave in © and the prior, p, is symmetric around O, then 8,
=0g=0andg, =¢s = 0 is an electoral equilibrium. We will then discuss
the implications of weakening some of the assumptions.

Proposition 3. 1f

HH =R, k<=
(i) (concave utility). For each d £ D, U, d) is concave in, and VU =
[BUOy, .. . aU/aOk) exists for all 6¢H.
(iii) (symmetric priors). There is a é_such that, for all v £ R, p({eeE)
VU, )y —~Hh=1n ({eeE\VUO, dyy = ¢}), then (6, 6,0,0) is an
electoral equilibriura.
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Ptoo_f.- LetO, = B = 6. Then, by definition of voters’ equilibrium and
proposition 1, g4(04, €5, ) = ¢s(04, 05, ) = Dand a(©,, O, p) = B(O,,
O, 1) = 1. We must show that there do not exist A > 0, v, £, R*, such that

1 = n n N N
1 - G(E,e + Ay, 0) — G[- %, O + \v,0] > 0, wheredx = m(é + \y, 0)
and B = B(éﬁ Ay, 0). A symmetric argument will cover B. By concavity
of Uin©®, UG + Ay, d) < U(O,d) + AVU -y forallA > 0. From this, it is
U@ + \y.d) — UG, d)

easy to show that G(r, © + Ay, ) = (el 7 =
AV <
= pi{e] 2[::,7 < 7)), since ¢ € {¢ | A\VUy = 2rc} implies ¢ £ {¢ | U© + Ay, d)

~ U6, d) = 2re}. Thus, if 1 ~ c(é, 6+ 1,6 - G(-%,é +1y,0)>0,

then 1 — p({e | A\VUy = %} - nfe| A\WUy = - %}) > 0, By condition (iii),
this implies
AVUy _ 1, AV~
1 - pel =5 = gh - wllel =5

Now from (4), & — B = fig*, @) — fig® 1) = " ~¢) T(g". ), where®T'()
> 0. Therefore, if ¢4(é + Ay, é) - qB(é + Ay, é) > 0, then & < [3 o‘% >

= %}) > 0. (5)

1
E. But then it is true that w({e | A\VUy = é}) + e | \Vy = % ) = 1, which

contradicts (5). QED.

Let us look at each assumption to check its severity. Condition (i) rules
out, for instance, the social choice example and others where the alternative
set is finite. It also implies that issues can be measured. This is unfortunate,
but standard, in spatial election models. Condition (i1} is also standard in
these models, natural to an economist, and allows type 1 preferences: [V,
d) = ~(0—d)'(0—d)]. However, as we will see later, there is some question
about the empirical validity of these preferences. Further, the entire char-
acter of equilibrium is altered if preferences are not concave. We will look
at these issues in detail in section IIB (iii).

Given the assumption of concave preferences, condition (iii) is the crucial
restriction. Let us first see what it requires. If p comes from a continuous
density on E (that is, p(R) = [r ke)de), then a sufficient condition for (iii) is
the existence of 6, such that for all d £ D there is d” ¢ D, such that vU©, d)
= — YU(O, d’) and h{d.c) = h(d', ¢) for all c. For type I preferences with a
shift parameter, U(0, d} = - (d-OyA{d—0) + ¥O where (4, ¥) is fixed
and A is symmetric positive definite, VU = 24(d-6) + v. In this case, if d
is distributed by the continuous density (k) symmetrically around d (that is,

kd+d) = k(d—d)) and independently of ¢, then® = d + %A“' -y satisfies
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3 i i i i pe, d. In general,

ii). Thus O is the ideal point of the medl’fm voler type,
E:or)u'iition (iii) docs not seem 10 imply a median vglt)er 0:{;0(“6:‘3?“5:(.95
; - if ¢ is inde endently distributed from d, then (in
the role of &1 Fovence of 4 g f type d and a platform O where

requires the existence of a median voter O
VU, d) = 0 (8 is d's ideal point).

(ii) CONCAVE UTILITY: ASYMMETRIC PRIOR. Now (ii}) is clearly
not a necessary condition for existence. Let us see Wh'flt happens if (i) is
weakened by considering a class of examples. In parucularé we return to
wype 1 preferences on a single issue, Ue, 4 = - (0-d)°. As;ume clls
identical and known across all voters. Let 4 be distributed according to the
continuous density function

2 ¢4 d=0
a+l

hdy =

b e d=0
a+l

where a > 0, We will consider different values of a and x}otc thatAcondition
(iiii) of proposition 3 is satisfied if and only ifa = 1,1n which case © = 0. For

this class of examples we can prove ‘ )
Proposition 4. IPfH = [—my, ma), My, M2 > 0 and if (0%, 6¥) 1san electaral

equilibrium for the above example, then
0 ifa=1
Or=05=4 ™ ifa<l
—my ifa>1

iti i —m, be arbitrary
Proof, 1f 2 = 1, proposition 3 applies. 1£a > 1, et O85> —m
and suppose ©%, 0F is an electoral equilibrium. Then W5(0%, 0p) = 0 for

€, 75k
all 9y Let 85 = 6% - ¢ where & > 0. G(r, 9%, 03) = H(©% - 3 + —E‘)w ere
= ifd<0
Hd) =

1 - } e ifd>0.
a+l

Thus for € near 2ero,

a
8 =
w (a+l

1
) exp [ —alOF —-;——E‘;) -

) exp(-a(@F - 5 +
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We will show that for some & near zero W2 > 0, and therefore 8% > m,
cannot be an equilibrium. Suppose W¥ = 0 for all € > 0. Then for al}

e>0, ot - S - 5= - & c
aep (O — 5 - g = e (-aO) = 5+ 20
or
_E_£ _ _E ., c
0 -5~ 5 + mas - adf o
This implies
OISE%- £ ['1-—2]—lna.

2 e(l+a)’ o

We remind ourselves that as ¢ > 0, g4 >0and gg > 0. Thus as e + 0, « > 1 and
-;; ~ %)= - = Thus,ifa> 0 and 8% > m, there
is some € near zero such that 85 ¢ H and V? > 0. This establishes the
proposition for a > 1 since a symmetric argument applies for ©f > — =.
For a<1 as similar proof applies. QED.

The key fact 10 note, in understanding why the proposition is true, is that
if 8, and Oy are very close to each other, then, because of the type I (quad-
ratic loss) preferences, it is only the voters in the tails of the distribution (the
extreme positive and negative values of d) who will vote.? Thus, for example,
if a > 1, then voters with extreme negative d are more likely '° than voters
with extrere positive 2. Thus, platforms move in a negative direction. This
observation extends to more general density functions and to multidimen-
sional issue spaces.

The problem with this fact is that boundary points cannot be equilibria.

Corollary 4.1. For the class of examples covered in proposition 4, if m,
and m, are large enough, an equilibrium exists if and only ifa = 1.

Proof. (if) follows from proposition 3. {(only if) Suppose a > 1. If

B~ 1. Sincee> 1,;’,"01{
E

(6%, 8%) is an equilibrium, then O} = —m,. Let 6 be such that az 1€ o
= -;- That is, O is the median voter’s ideal point, é <lin a;;‘l <0fore>1.
Let©®, =05 + & = —m; + eand let — m, +§+ai€ = 0. Thus 9, =
-8 - \(m-02 - %E. (By m, “large enough,” we mean that (m, —6)?
> %).) Thengy = 1 - G(-i—, 8) = 1 - H(O, + % + ;‘E) = % g5 = H(Oy

% - Ec;) < -;: Therefore, g4 > ¢zand 8% = —m, cannotbean equilibrium.

A similar argument follows for 0 < a < 1. QED.
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One must conclude that symmetric tails are a necessary condition for the
existence of an equilibrium. Is this sufficient? Surprisingly, it seems so, sub-
ject to a precise definition of “tails.” Returning to a single issue space with

C —
U= -(0 — d)? remember that V4 = g4 — ¢z = 1 = HB + ) - H®

O
- Bi) wheree = 0, — 93>0 and® = 9'3:—-—3. Now consider 8V*4/30 4
&

¢ 1 c ¢ Ju —~ ¢ 1 c ¢ op
= — e - e e — ] -k - X[ttt Rl )
o + us)[2 ag?  o’e 29,;] [ Bs] 5 pe? B 89,4]

1 c ¢ o

A . Ll _ >

For ¢ large enough aV4/86, < 0. In particular, if 5" w  o% 00, 0,

. . |
then A will want to decrease ©,. Similarly, B will want to increase 65 if 3

J c B > 0. Since @ = B = 1 at equilibrium, we know that there

TBeE B
5 . 4
is an & such that if 1 — H(© + %) = H© - ;) forall 0 < € < g, then an

equilibrium exists at 6. Another way of stating this is that h(d) = h(~d) for

alld=6 + <.
It should be noted that the more concave the U() are, the larger the tail
which must be symmetric. Thus, for example, fUO,d =~ (16 ~ 4}y

for v = 1 where || = (% )", then larger v require larger t. In the best
case (v = 1) with a single issue, ¢ = 0; that is, no symmetry is required for

-B
existence at the median. In this case, for A > B, ¢4 = p({e IA oy = al: and
A+B 1 A-B_1 A+B 1
—_— — = . > < — — =}, =
d= + a}) and g5 = mdfe | o= 5 and d 7 B}) IfA=06

where p{le | d = o) = %. then, for all B < A, either g4 = gg = 0 (when

11—222 <Dorg.z % and gp = % and, therefore, VA(©,, 6p) = 0 for all O
# 9, = 6. The conclusion one draws from all of this is that if preferences
are concave, a sufficient amount of symmetry of tastes must occur if an
equilibrium is to exist. This lack of robustness of the model is somewhat
discouraging.

However, one must recognize that type I preferences, as well as strictly
concave utility functions, imply a form of behavior which seems to be em-
pirically invalid. I refer, in particular, to a stylized empirical fact: abstentions
increase with alienation. That is, as both candidates’ platforms move away
from a voter's ideal platform, the voter is more likely 1o abstain. With con-
cave and type 1 preferences, however, just the opposite is predicted. This is
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easiest to see by writing A = U(0,,d) — U(©z,d) = —(-0, + df + (-9

+ d)? = 2de — B¢), wheree = O, — Opand O = _O_L‘;-_O_,, Now% =
— oA —

-2&8.1fe >0, B < 0 and, therefore, as © declines, this voter is more

likely to vote for A. From our model (assuming a and B constant for now),
N | —
a voter abstains if —— < 4 < 1 or _1 <{d=-0)e< -l- Thus abstentions
B 2¢ o {3 o
occur for small values of |8 — d| and not for large values. This is contrary to
the stylized fact. We thus turn to a consideration of other types of
preferences.

(iii) NONCONCAVE UTILITY: EXAMPLES. As an alternative to type
I preferences we consider those of type 11, or U(0,d) = —[|© - d||'2. These

are convex functions on each side of the ideal point d, even though they are
2
not convex over all O, Assume O, > O and letr = x and s = Ec IfH =
o

R'(a single issue), then a voter with parameters d, )
(i) votes for A if 0, — By > r2and 64 ~ N =d =8, + x(r)
(i) votes for Bif ©, — 0y > s2and Oy — x(s) = d = Bp + 2(5)
and (iii) abstains otherwise,

where \
o) = 0, ; 05 W(GA ; 0y _ _1{;_)”2
and
x(w) = (94_;__95 - %2)2 w,

Notice thatif 8, — 6, is fixed and if ©, and 8, simultaneously move far
enough away from d, the voter will abstain. Let H() be the distribution
function of d (and A(-) the density function) and assume c is fixed and iden-
tical for all voters. Then the probability that a voter votes for A is

$= RO, + x(1)) ~ HO, = 2N if 0, — 05> 7

0 otherwise

and the probability that a voter votes for B is
£ - H(©p — x() ~ H(Og + 2s)if 0 — 65> 1

] otherwise.

The following proposition can be established for this class of examples.

Proposition 5. If H(-} is continuous and unimodal at ©,, (i.c., R'(d) = 0 for
d = 6, and k'(d) < 0 for d = 0,) and if ©f, 6} is an equilibrium for k, then
0, — 42=0%,03=47 +6,.

Proof. Suppose 8% < ©,, — 4¢*. Then there is e > 0 such that 6, = 65
+ 4% + € < O, Now ¢ » 0 implies x » 0 and z » 0, since e » 0 implies 7 » 2¢
and s + 2c (because a > 1 and § » 1). [Note that fore > 0,0, — 05> r?and
6, — 85 > 5%, since otherwise g, = g5 = 0, whichimpliesa = = 1, which
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implies 4 ~ 05> 1%, s2] Assume s = r. There exists £ > 0 such that ©4(e)
+ x(e) < ©,,. Therefore At} = KO ,(e) — zte)] for allre[®, — z, 6, + x]
and, since Og + 2560, - 1, h{t) <h(Op + 2) = h(O, — 2) forall te[Oy —
x, O + z]. Thus g5(04(¢), O%) < ¢a{0ale), OF ifr=s. St{ppose r + sand
gs > qa- Ata voters’ equilibrium“ if gp > g4, then 52 > rsince B < a. Now

1 0,-6; ¢ _16‘4-—95

s e

ax/65=-—g—-?——5)2 s( 7 —§)<0andaz/as-—

_ 2 e,—-06
OA—QB 52]/2 5'26/4 eﬁ S_—If2<0‘ e_.[""' 8 _
Ba=8s _ SymyCpa - sinc 5

2 4 2 2 4

s* ‘f__ﬂu_j)<0
Z]+4_ ( 5 3

Thus d¢a/ds = h(Op + 2} - d2/ds + h(Op — x) oxfds < 0. Therefore gx(h)
< g5(r) < galr) implies that if 9F < — 4 + O, thereis B, < ©,, such that
ga > ¢s. Thus 6} cannot be an equilibrium platform. A similar p}'(:)of works
for ©, > 4¢* + ©,, and symmetry implies the rest of the proposition. QED.

We have shown that for a unimodal distribution of tastes and U = - |e
~ d|'?, any equilibrium must be concentrated around the mod_e.“ Since this
equals the median only for symmetric distributions, we u:nmedmlely see that
non-concavities produce qualitatively different equih.b.rla. o

Although proposition 5 contains necessary conditions for equilibrium
platforms, they are not sufficient. In fact, if the mean a_nd the fnor_:ie are t00
far apart (relative to 4¢?) or—what is the same thing—if the distribution of
tastes is too skewed, there may be no equilibrium. Consider the following
continuous, asymmetric density function for d.

S-e ifd=0
W) = {(1 — ed)S if0=s=d=<R

e~®d-Rg(1—¢R) ifd=R
where § = [-;— + R(l - %R) + -::(1 - eR)" L, b,8,4R>0, and 1 — eR >
0. Note that & is unimodal, where d = (y)}is the mode. Let 6, = O + mand
assume thatr = 5. Thenx = % (g - -5)2. For (n, R} such thatx > 4.2, and
Rzxif0,=0, + 4 = 4, then
-

S{O4 + A1~ 5@, +x) = B4 = DL = 501 =D

i1 ] .-
(O + 2)(1 - 52-(6,, R Rt Rt Ul et HOB-2) 4
Six — 95}~ %sueA +x)? — (00 — 22 = (05 + 21>0,

ifx — Op >f’2-[(en F )l = (05 — D2 — (05 + 27
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Since x " By > 0, we can choose € > 0 as well as m and R, such that, for all
Op=d4c’.qs ~ ¢ > 0. Therefore, from proposition 5, if € is small enough
and R 1s large.enough, there can be no equilibria, since there are enough
voters to the right of B (relative to those to the left of the median) to enable
A 1o always collect a majority of those who vote.

QrI_e can st.ate {overly strong) sufficient conditions for the existence of an
equilibrium in this class of examples.

Pro?osition 6. 1f h(d) is continuous and unimodal, U = - |© — d|'*, d
9 ¢ R', and ¢ is fixed, let © maximize H©, + 4°) — H(O, - 4 i,e;
P®) = ng + 4c) — H® — 4D 1{P©) = HO — 4% and PO =1 -
H(O + 4¢°), then B} = ©} = O is an equilibrium.

Proof. Let 924 = 0and 05 <O, 10, = 0, — 4% theng, = gp = 0.1f
0; <6, — 4%, onecanshow 8y + z = O, — 4%<0,. Ifx < 4¢2, then A()
= h(Oy + 2)forally = e [0, — 2,0, + x]and k() =< h(©g + z)'for allte
[05 — %, Oy + z]. Therefore g4 > qp. 1 x = 4c%, g4 — g5 = H(O4 + %) —
HO, -2 ~ HOp +2) + HO — x) = H(O, + 4¢%) — HO, — 44 +
H(®, - %) — H(©, — 7). By assumption, P(8,) > H(6, — 4c%) = H(O, —
S.E;I)’hus, ga > qg. A similar argument follows for 65 = 6 and 6, >A93.

8ne is led naturally to the following

onjecture. IfU = — |6 - dl* forn>1,0,de R [} = (2 xh2

. ? . ’ ) r - and
if the density on (d, ¢) is h(d)g(c) where A is continuous and unimo::lal {i.e,

36, ¢ Vh(d) (0, — d) > 0V d] and, letting F = max k({(dc) [———ue il
) 2¢

< 1}) and & be the solution, if = p({(d.0) | a(d - 8) = 0 and 16 —
A 2
> 1)) for ally # 0 then 04 = 0% = Qs an equilibrium. ‘
Thus, if &lllf:‘ls conjecture is correct, then when preferences are of the form
;— e - d!l ,{n 'Tbl)’ and the distribution of tastes is unimodal and not too
symmetric, equilibrium exists where 8, = 03,94 =gz =0
O, are somewhere near the mode. i i T »and O and

C. Summary and Comments

We can su'r.nmarize the results of this section in several brief statements.

1. !f utility functions are concave and tastes are continuously and sym-
n}emcaily distributed, then an electoral equilibrium exists, with both can-
didates selecting the median voter’s ideal point, and no one votes.

. 2. If utility functions are concave and tastes are asymmetrically distributed
in the tails, then an electoral equilibrium will not exist.

3 If preferences are of type 11 (convex on each side of an ideal point) and
if tastes are continuously, unimodally, and not too asymmetrically distrib-
uted, then an electoral equilibrium exists, with both candidates choosing the
modal voter's ideal point, and no one votes. #
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Several comments about these results seem to be in order. First, if we were
1o substitute minimax regret behavior for our fully rational expected utility
model of voters, nothing substantive with respect to the existence of electoral
equilibrium or modality of candidates platforms would be altered. None of

. |
the arguments in this section would be affected if we leta = 8 = > Thus

both madels of behavior produce identical outcomes in eqw'lilm'um." They are,
therefore, significantly different in their predictions of disequilibrium phe-
nomena only if candidates maximize expected plurality.

Second, the role of the assumption of candidate irrelevance should not
be ignored. 1f different voters have different beliefs about the likelihood of
candidates’ postelecu'on positions, then, even if candidates were driven (by
expected plurality maximization) to choose identical positions, there may be
a positive probability of turnout. Further, it is highly likely, if the candidates’
names (reputations} count, that equilibria with di fferentiated platforms and
positive turnout will exist. '

Third, we have not considered the implications for existence and char-
acterization of equilibria of the assumption: that preferences might be a
mixture of type I and type I1. 1t would be interesting to know, for example,
the outcome (equilibrium) predicted by this model when “Republicans” have
type | preferences and are concentrated to the “right” of the median voter
and “Democrats” have type 1I preferences and are concentrated to the “left”
of the median voter. Technically, one could consider a distribution of pref-
erences constructed as a convex combination of type 1 and type 1. For
example, let #'(d) be a density of type 1 preferences and K(d) be a density
of type 11 preferences, and consider the implications if the actual density of
tastes is A W) + (1 — N) K(d) for some A € {0, 1]- We leave this exercise to
the interested reader.

Fourth, we have not explored the implications of this model for the stan-
dard social choice problem with 2 finite set of alternatives. A reasonable
approach to that problem would be to :mbed that set of alternatives in the
real line, extend the preferences of voters over the line, and then apply the
results of this section. This is in the spirit of single-peak preferences (a
property that both type I and type 11 preferences have on the line—although
not if the issue space is multidimensional) and, of course, the method of
imbedding is crucial.'*

Finally, although [ have used the phrase "general equilibrium" in the title,
{ have ignored at least one sct of important actors and one type of candidate
decision. The missing actors are political activists who donate funds (to
change voters’ likelihood beliefs?) and who, by ringing doorbells, can raise
the cost of not voting and thereby raise turnout. The missing decision is the
issue of whether to run or not. Entry into electoral competition has been
ignored. '
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We turn next to some generalizations of the model and to the implications
which arise when candidates adopt behavior other than expected plurality
maximization.

II1. EXTENSIONS AND ALTERATIONS
A. Other-Candidate Objective Functions

In section HA we indicated that candidates might wish, for example, to
maximize the probability of winning or their expected vote. We now con-
sider each of these in turn.

Let us consider a scoring function where s' = 1 if voter i votes for 4, 0if
they abstain, and — 1 if they vote for B. Then the probability that A wins is

simply P4 = prob {El #>0} + -;-prob {2=" st = 0},or prob-:; §1 >0} +

1 1. . .

EPmb {; s' = 0}, where g4 = prob{s' = 1} and ¢p = prob{s’ = —1}. Since

each voter is independenty and identically distributed,'® as n » » prob
1 .

{i;i s — (ga — ga)l > ¢}~ 0 for all e > 0. Thus for large electorates, a

reasonable approximation of the maximization of P, is the maximization of
expected plurality.'®

One expects, therefore, that if candidates maximize their probability of
winning, the outcome in large electorates will be the same as that which
occurs if they maximize expected plurality.

If, on the other hand, candidates maximize expected votes, the outcomes
are significantly different because of the role of absientions. For example,
there is no tendency for platforms to converge; in fact, candidates will con-
stantly try to differentiate themselves from their opponents. o

Lemma 5. If there is an € = 0 such that G(1, 0,4, 85) — G(~ 1, 0,, Og)
> 0 whenever |©, — B3|l > ¢, and if O, ©f is an electoral equilibrium
under vote maximization, then 8% # O}.

Proof. If ©3 = 6%, then g§ = g§ = 0. But either A or B can change 6;
such that ¢¥ > 0. QED.

I have not characterized further (much less established the existence of)
electoral equilibrium under vote maximization. It may, however, be inform-
ative to consider an example, and 50 we return toa single-dimensional issue
space with type 1 preferences and ¢ fixed and known acrass all voters. As

before, if 0, > 65,0 = —e—‘—-;—eg and & = O, — Bj, then G(r, ©) = HO

re . o . . . .
+ ;) where H is the distribution function of ideal points, 4. We consider

only equilibria for which g, = ¢s (whether there may be others is an open
question). Under the appropriate differentiability and symmetry conditions

o e — e ome

—————
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99 _ ganadds - o,

on H, a necessary condition'” at equilibrium is that = o, 70,
1 € 3 - . B _ £ .
Thus,—2-=;—E§=E;§anqu=l-H(9+-2-)—H( 2).1{1115

A | f?c A 1 /2c
symmetric around ©. then©, = 0 + 5Va and O3 = © — Vo where

1 .
a = f(ga, gp)- [For minimax regret behavior & = 3 and 9, = & + Ve, 8
=0 - \/E.] Although a cannot be easily solved for, we know (since g4 =

n! 1., - L pil: 2
A2 (;2-) < o =< 1. By Stirlings formula, for large », \’mr =

o 0
« < 1. Therefore, at a vote maximizing electoral equilibrium, (\/Q_c)(—?—)““

95) that

=20, -06= \/2¢. These are not very tight bounds, but whatever ©, — 9,
is, there is always positive turnout in this type of equilibrium.

It should be emphasized that, even for the example, only necessary con-
ditons have been examined. I have not yet found additional conditions
which guarantee that these are sufficient. Thus it is possible that an electoral
equilibrium, with vote maximizing behavior on the part of the candidates,
does not exist. :

B. More Candidates and Non-identical Beliefs

Rather than proceed through a variety of special cases, we turn to a descrip-
tion of the general model of voter behavior under the extension of ration-
ality that we have proposed. To do 50, we must introduce some new notation
and recall some old:

i=1..,n+1} voters (0 < n<x),
j=1...m candidates (z = m=x),
0,eT f's platform

n the number of votes forj, . .

Y s decision function where 8' = (8;, . . ., 8l) and if

i votes for j (j = 0 is abstention), then 8 = land
3i= 0 for k + j. We will let &¢) = (0, .., 0, 1. 0,
..., 0) be s decision to vote for j,
Q,={neR™"'|n;isa non-negative integer and X o n; = n}.
0, represents all possible election outcomes in terms of votes if there are n
voters,
6 = (91, .o ny 9,,,)& Tm,
T x QMDD where M(T) is the space of probability measures
on T and h is the outcome rule specifying the prob-
ability of the winning platform, if candidates have

platforms (6, . . ., O,) and voters vote (n,, . . ., fip)
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Remark. In section 11, where m = 2,
OA if Ny > ng

h(O,n) = £ Ogif ng>ny
©, with probability % if n, = np.

Using the above, we see that V(8, n, &) = [ Uy, dYdh(O, n) is i's expected
utility if platforms are © and votes are n.

A voting strategy for voter i is a mapping from voter characteristics (d', ¢')
to decisions. That is, 8" E {8°(0), (1), . . ., B'(m)}. WeletZ' = E'x...x E-
'x E'*'x. .. x E™ be the space of others’ characteristics and represent i’s
beliefs about z' & Z' by a mapping ¥i: E' » M(Z"). Thus if ¢ has characteristic
¢, he believes that others’ are distributed according to Yi(e'). With these
beliefs and with knowledge of the strategies of others, =3, ...,, 8"
. . .» 3, i's expected wtility from voting for j (the decision 8'() is W',
B, ¢y = JV(O, 8j) + Spe; MM, A)d Vi) ~ (1 = & )

The integral is 7's expected utility of the outcome of the election and (1
— 8i(j)) = C'is the cost of his decision, That is, (1 - iMC = Clifj =1,
..., mand it is 0 if i abstains by choosing j = 0.

We can now state precisely the generalization of a voter equilibrium in-
troduced in section I1.

Definition. A voters’ equilibrium for <(©,, . . ., ©,). ¥l L ¥t i>dsan
n + 1 — triple of strategies &', ...,8*Y)such thatforalli=1,...,n +
1 and all ¢ ¢ EY, §'(¢) solves

Maximize WH5'(), 5%, )
j=0,...,m

This concept of equilibrium is identical to that of a Bayes equilibrium.

For a variety of reasons, this model is extremely difficult to analyze without
further assumptions on the structure of beliefs. Thus we introduce the
following.

Assumption. (Independent—identical beliefs). For each voter i, ¥'(¢) =
px...xpwhere E* = E for all hand p e M(E).

Under this assumption, there is one voters’ equilibrium which is of par-
ticular interest: the one in which all strategies are identical.

Definition. A symmeltric voters’ equilibrium is a voters’ equilibrium such
that §¢) = 8*() foralli=1,....n + 1. _

We consider only symmetric equilibria throughout the rest of this paper
and thus need only look at a common strategy, 3.

Given a strategy 5, the probability that a voter votes for candidate j is

g = nile] 8(e) = 3G

Thus, if all 4 use 8, the probability that the votes tallyton = (ng, . - - fiw)
when i is not considered can be computed to be

!
P, q) = 'n—,,l_n__nj (g™ - - (g™ ©)
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Further, the probability of n if i votes for j is P(n — 8'(, g). Therefore is
expected utility of voting for j given B is .
WHO, ¢) = L., VO, n. ¢) Pln - 8() — (1 — d{NC".

If welet R(O, p) = {e| WO, 0) > Wy ©,¢) forallk =0,....mandk +
41, then the probability that a voter votes forjis (M) g; = rIR(©, p)] for
i=0,...,m

Remark. 5* is a symmetric voters’ equilibrium for <@, u> if and only if
(i) 8%() = 8(j) when e e R{O, p*(, ¢*)), and (i} p* and ¢* simultaneously
satisfy (6) and (7).

Remark, In applications, one need only calculate p(r) for n 3 RO, n) #
m(®, n — 8()) forsomej = 0,...,m Further, one can “lump together” all
nn,' D AO,n) = (O, n') and (O, n — 3%)) = h(©,n" - 8'() for allj. In
section 1, « = ps + pyand B = P2 + Ps did just that (sce McKelvey and
Ordeshook, 1972).

With one more definition, the continuity of p, we can state an existence
resuit for a symmetric voters equilibrium and some implications for turnout.

Definition. . € M(E) is “continuous” if A? + A° > n{A9 =+ p(A%) where A?
-bA"sz(l)a’sA‘*‘,a"*a”:}a"eA"and (2)a°eA,>Ja’eATDa’>a’

Proposition 7. A symmetric voters’ equilibrium exists for <0, p> if ()
is continuous and (b) V is continuous in ¢

Proof. Since g ¢ [O,l]""‘l and p ¢ [o,11*, if p,(RJ{G, o is continuous in p,
then, since p(n. ¢) is continuous in ¢, Brouwer’s theorem applies and we are
done. Thus it is sufficient to note that RO, p) is a continuous correspon-
dence in p since V is continuous in ¢ and W; is linear in p. QED.

Remark. Remember, V(0, n, &) = [z Uly, &) dh(©, n). Therefore, if U is
continuous in 4, so is V. Also, if £ X [8, ®) = R* and (D) = fp h(e,c) dede
where h is continuous, then p. is “continuous.”

Corollary 7.1. If the outcome function h has the property that /(<n+ 1,0,

i
.. 0>,0) = 6;with probability;n- ¥jand A(<n,0,....0> + 3(), Q) = 9,
then expected turnout is zero in a symmetric voters equilibrium if and only

if uie| i D% UG, d) = m};\x U®;,d) - = L

Corollary 7.2. (2) If ©; = ... = O, then gt = L (b) Let U(d) = max
7

m= o -

m

U(O,, d) and U(e) = min U(8;, d). Then (b.1) if p(le | ¢ >
j

U@h = 1, then g3 = 1. (0.2 if pe [ ¢ < _71': @ - udh >0,

then g% < 1.

For type I preferences, if pis represented by a continuous positive density
onR*andif Oj # 0, forsomej, k=1,...,m, then (b.2) obtains and expected
turnout is positive.
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One should not rush from corollary 7.2 to the conclusion that turnout
increases as the number of candidates increases. To examine that issue, one
must also consider candidate competition, given voters’ behavior. Unfor-
tunately, as the reader probably knows, M candidate competition (M = 3)
is much more complex than what was analyzed in section IL. Two new con-
siderations enter. First, it is now conceivable, and likely, that voters may not
vote for their most preferred candidate.'® That is, candidate j may receive
votes from voters who prefer candidate € to j to k, if those voters view the
probability of affecting the election of £ as much smaller than that of af-
fecting the election of j. Second, if all m platforms are identical, any one

1
m—
i votes for the others, to be better off. Thus as m increases, it is more probable
that candidates can easily gain by shifting away from common platforms.
However, if j does this and then & moves between €& and &' (the platform
of others), k may capture most of the votes for ©' by the fact that they vote
for their second highest alternative, and thus &/ # @’ is not an equilibrium.
Under certainty, equilibria with m = 3 are rare. For the model in this paper,
they are more likely to exist because of the uncertainty and the possibility
of abstentions; however, it is probable that equilibria with m > 2 are less
likely than those with m = 2. This remains an open question.

candidate, j, need only ensure that ¢ > N ¢', where ¢’ is the probability

C. Some Thoughts on Testing

One issue which is constantly raised concerns the empirical validity of a
model: “Is it consistent with facts?”

Let us first consider some facts which cannot be addressed. Since <0, u>
are the only exogenous variables in the voters’ model and p is the only
variable in the full model, such a question as “How is turnout affected by
perceived closeness and/or party differences?” cannot be addressed, since
turnout and closeness are simultaneously determined in the voters’ model
while turnout, closeness, and party difference are simultaneously deter-
mined in the full model. Thus regressions of the form used by Ferejohn
and Fiorina (1975) are incorrectly specified in the context of this model. I
must admit, it is possible that partial effects may be identifiable from some
reduced form regressions; however, L suspectnot. To see why, let us consider
avariation on the two-candidate model in which we let a voter’s characteristic
be (¢, b'), where ¢ parameterizes tastes and costs and b' parameterizes beliefs.
A strategy is now a function of (e, b). If we assume that when i is {¢/, 4") he
acts as if all other voters believe p £ M(E) is u(;, &), we can partition E X B
into four sets by choosing the values of two parameters (p, ), as follows:

Au = {(e. B[ U®, d) — U©p, d)| < p,a* =~}
Ayp = {{e, 0) | |U(B4, d) — U(©p. d) < p, a* = v}
and so forth, where o* is evaluated at the voters’ equilibrium for 6.
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Thus, for example, Ag Tepresents the tastes and beliefs which would yield
a response that party differences are large, and the election will be close.
w(A;) would be the probability that a randomly selected voter belongs in A,.
Thus, by suitable choice of p, p, and v {and the class of preferences and
beliefs, E X B), one might be able to “explain” all response patterns.

This is an uncomfortable conclusion in that it seems 1o say the model has
no predictive value with respect to voting behavior. 1 think, however, that
is the wrong conclusion. In fact, the model predicts {in two-candidate elec-
tions) very precise outcomes. For example, if tastes are symmetrically and
unimodally distributed, then both candidates’ final platforms should be near
the median and modal voters’ choice and turnout should be light (or zero).
Also, as we saw, asymmetrics and the composition of tastes (type 1 ortype
11 preferences) significantly affected the predicted outcomes. Thus, in fact,
the model is “testable.” Further, since—in general equilibrium—both our
model of voter behavior and the Ferejohn-Fiorina model predict identical
outcomes, one must either await further refinements of each or use “dis-
equilibrium phenomena” to differentiate between the two.

Needless to say, there is much more work to be donc before we fully
understand the complete implications of all the simultaneous interactions
between voters and candidates.

APPENDIX

In this appendix we collect some results that deal with the comparative statics of
a symmetric voters equilibrium for two-candidate elections.
Lemma A.l. If G(r. ©,, ©;) has continuous second derivatives in (r, ©) in a

neighborhood of (-&1-;. ©%*) and (—- -l—* 6%), where (a*, B*, ©%) is a symmetric
equilibrium for <€*, p>, then the solutions, <a{8), B(6)> of

"0, ), %0, p)] ~a =0
f1£®,B), (B, )} ~ B =0

have continuous first derivatives in € in those neighborhoods. if

D= ] u_l ﬂ *0
(AR
whercﬁisM

2
Proof. Implicit function theorem.
Lemma A.2. Under the conditions of lemma A.1,

d‘f [,,-; + g - qsmc]

ie )=

dx

g-dfig-gdlig
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where x £ {8,, ©,}. Further, if ¢* = ¢*, then

d .

EXZ =gl ~ fl'q’uj)

wherej = A, B, o = o, B* = B. )

[Nete: fi < 0 when ¢* = ¢® from next lemma and g; = 0 implies‘{—df =0ifg =

a whenever ¢* = ¢°.]
Lemma A.3. For

2 n! .
fixy) = 2h=u mfy‘(l —x—g)p

n-l]
; n!

4=0 Klk+ 11{n—2k—1)!

n—1
[T] n!
L= 00 2 TR e gk

+2

xkqul(l _x_y)vr-ﬂt-],

!xb—ljlr(l _x_y)u-#-i

n-1

*[T] n! R e 2he

D P Ty ey LA L VA
- n{l—x—y)" ",

-

L = (x_y] 2¢=1 mxk-lyh-l(l_x_)‘)n-w‘

Thus, for example, if x=y, thenf, = Oand f, < 0;ifx >3, thenf, < 0,f, > 0:and
if x < 3, then f, < 0 and £, is of indeterminate sign.

Lemma A.4. (o — B) = (¢ — ¢") [(g". ¢°) where I{g", &) =0.

Proof. o — B = figh ¢*) - figh ¢ = G-

E[lg_l]____m____x) (l~x— yo -1
4e0 Bh+1n—2k—11"7 Y '
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1. For a good summary of this literature, see Ferejohn and Fiorina (1974).

2. The exceptions include the model of Hinich, Ledyard, and Ordeshook
(1972) in which voters choose probabilistically across voters. However, no model
of individual decisions was given there to justify this behavior. Maybe none exists.
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3. We use Kramer's (1977) terminology.

4. In their (1974) article (p. 527), they acknowledge the interactions of voters’
decisions but:suggest it is “a highly complex situation.”

5. The basis for this claim is provided in section 1IB(ii).

6. See the appendix for these facts.

7. See the article by Aranson, Hinich, and Ordeshook (1974) for these,

8. We later give an example of asymmetrically distributed tastes in which an
electoral equilibrium does not exist.

9. The tail wags the dog?

. . . . _a
10. For negative values of x, the proportion of voters withd <xis Py e for

-, . . .1 .
positive values of x, the proportion of voters withd = xis P ¢~ For arbitrary

> 0,—L¢‘5> e %ifa> 1.
e+l a+l

11. See the appendix for the following fact.

12. See Hinich {1977) for a simliar result in a slightly different model.

13. Closeness may not count but it seems to be inevitable.

14. This approach must be well known to social-choice theorists. 1 welcome
references on related work by others.

15. If voters' beliefs, and therefore their voting, are not independently and
identically distributed, this approximation may be incorrect.

16.1f ¢* > ¢*, then p, isalmost 1. If ¢* = 4%, then p, is almost %, and if ¢* < ¢,
then p, is approximately 0.

17. See the appendix for this.

18. See Ferejohn and Fiorina (1974) for the case when m= 3.
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